The MAX IV Laboratory

The MAX IV Laboratory

Snøhetta as Architects

12/08/2016


Since 2011, Snøhetta has been working on the development of a unique landscape design for the MAX IV Laboratory. Located in the city of Lund in southern Sweden, the MAX IV Laboratory Landscape is designed with the aim of creating a functional landscape solution for the high-performance synchrotron radiation laboratory MAX IV. MAX IV is a national laboratory operated jointly by the Swedish Research Council and Lund University. The synchrotron facility is created by FOJAB architects, and Snøhetta has designed the 19 hectares landscape park. MAX IV was officially opened on June 21st 2016. The landscape design is based on a set of unique parameters to support the performance of the laboratory research, including measures such as mitigating ground vibrations from nearby highways, storm water management, and meeting the city’s ambitious sustainability goals. The MAX IV is the first part of a larger transformation of the area northeast of Lund aiming to turn agricultural land into a ‘Science City’. The creation of a new, green public park rather than a fenced, introverted research center makes a difference in the public realm. The MAX IV site is a green site, and the image of the meadow vegetation on sloping hills as a recreational area is setting a new standard for research facilities’ outdoor areas.


28-Apr-2016


The MAX IV Laboratory, a high-performance synchrotron radiation laboratory, is under construction on 19 hectares (47 acres) of traditional, productive land outside the city of Lund in southern Sweden. This advanced research laboratory will be the first built structure of the future ‘Science City’ in the Brunnshög area northeast of Lund.


Snøhetta was commission in 2011 to design a functional landscape solution for the facility based on a set of unique parameters to support the performance of the laboratory research. These measures include mitigating ground vibrations from nearby highways, stormwater management, and meeting the city’s ambitious sustainability goals.


MAX IV is a national laboratory operated jointly by the Swedish Research Council and Lund University. The main components of the new synchrotron facility will be two electron storage rings. The largest ring has a circumference of 528m and a free electron laser fed by a 250m long linear accelerator. The MAX IV Laboratory landscape is currently under construction and will open summer 2016.


The landscape design is based on 4 important criteria:


1. Mitigating ground vibrations – A high tolerance for ground vibrations is critical for the use of a synchrotron. Testing led by the Dynamics group (researchers and engineers) revealed that traffic on the neighbouring highway (E22) was causing ground vibrations that could influence the experiments in the laboratories. The flatter surface, the more ground vibrations became an important part of the mitigation strategy. Creating slopes and a more chaotic surface reduces the amount of ground vibrations.


2. Mass balance – How could we optimize the reuse of the excavated masses on site and create new use and form? A cut and fill strategy was needed to keep the existing masses on site as it secures the option of reversing to agricultural use when the synchrotron no longer will be on the site. By uploading the digital 3D-model directly into the GPS-controlled bulldozers, we were able to relocate the masses to their final position in one operation. By September 2011, approximately 60% of the mounds were created. No masses were transported off site. The last section of the wave pattern will be finished in 2016.


3. Storm water management – The city planning department of Lund restricts the quantity of water permitted to run into the city’s pipe lines and water management inside the site boundaries and the earth works needed to be collect and stored on site. Both dry and wet ponds are designed for the 1-year and 100-year storm water.


4. Plant selection and maintenance – The facility has a 25-year maintenance contract with the client. The discovery of the nearby natural reserve area at Kungsmarken made it possible to use a selection of natural species by harvesting hay and spreading it on the new, hilly landscape which give the plants up to 5 growing seasons until completion of the project in the summer of 2016. The maintenance strategy includes a combination of grazing sheep and conventional machines suitable for meadowland.


On the MAX IV Lab site, ground vibrations are commonly created by wavelengths between 10 to 40m in height and follow the surface of the ground. The flatter the landscape, the more likely these vibrations will interfere with the scientific experiments in the laboratories. This knowledge initiated a distribution of numerous mounds to create a desired uneven topography, leading to a bold pattern, manage the water run-off and mass balance on site.


3D-modelling proved crucial for several reasons. The design layout was established by extracting the nature of vibrations into rational values inserted in a generic model (Grasshopper; a Rhino plug-in). In plan, intersecting tangents radiating from the major storage ring form the first basis of the wave pattern. These align with the positions of potential future laboratories, and the starting points were defined by 10 to 40m vibration wavelengths and a 4.5m amplitude. The Dynamics group stressed the fact that the more chaotic combinations of waves, the better.


A second set of waves was established from a spiral movement centered in the storage ring merging with the site boundary. Our digital model enabled continuous testing of the pattern’s effect on mitigating the ground vibrations.


MAX IV has been a collaborative process together with the client, consultants and construction developer, and will remain as a “work in progress” throughout the construction period until the opening of the facility in 2016. The contractor, PEAB/ Whilborgs, will stay involved with a 25-year maintenance contract.


The MAX IV site is a green site and the first part of a larger transformation of the area northeast of Lund that will turn agricultural land into a “Science City,” featuring a new housing development as well.


The creation of a new, green public park instead of a fenced, introverted research center makes a difference in the public realm. The image of meadow vegetation on sloping hills as a recreational area is setting a new standard for research facilities.


The step from advanced geometry to fabrication is still one of the largest challenges we face in design today. In MAX IV, the process was like having a giant 3D printer producing the project on a 1:1 scale. The high-tech research facility together with the low-tech meadowland creates the iconic image of the waves that protects the research facility from the vibrations. The digital model gets a final analog interpretation through the hand of the machine operator and native meadow grasses maintained by sheep to tell a fun and functional story of this research laboratory.

Products Behind Projects
Product Spotlight
News
Sanjay Puri, Dominique Petit-Frere, Emre Arolat and Yenny Zhang join Archello Awards 2024 jury
23 May 2024 Archello Awards
Sanjay Puri, Dominique Petit-Frere, Emre Arolat and Yenny Zhang join Archello Awards 2024 jury

Sanjay Puri, Dominique Petit-Frere, Emre Arolat and Yenny Zhang have been announced as Archello Awar... More

Storefront in Amsterdam by Dok architecten features sculpted facade of hand-molded bricks
23 May 2024 News
Storefront in Amsterdam by Dok architecten features sculpted facade of hand-molded bricks

The Italian fashion brand Dolce & Gabbana has opened a store in Amsterdam's P.C. Hooftstraat ret... More

Prokš Přikryl Architekti converts historic grain silo into multifunctional conference and art space
22 May 2024 News
Prokš Přikryl Architekti converts historic grain silo into multifunctional conference and art space

Prague-based Prokš Přikryl Architekti has converted the grain silo of a historic mill buildin... More

Surman Weston veils self-build Peckham House in hit-and-miss brickwork
21 May 2024 News
Surman Weston veils self-build Peckham House in hit-and-miss brickwork

London-based architectural studio Surman Weston has completed its first self-build project in the vi... More

Key projects by Woods Bagot
21 May 2024 News
Key projects by Woods Bagot

Woods Bagot is a global architecture firm known for its diverse portfolio of forward-thinking and su... More

Filippo Taidelli Architetto designs transparent “knowledge hangar” near Milan
20 May 2024 News
Filippo Taidelli Architetto designs transparent “knowledge hangar” near Milan

Milan-based Filippo Taidelli Architetto designed the Roberto Rocca Innovation Building as part of th... More

Klaksvik Rowing Clubhouse by Henning Larsen celebrates Faroese sporting and cultural heritage
20 May 2024 News
Klaksvik Rowing Clubhouse by Henning Larsen celebrates Faroese sporting and cultural heritage

Danish architectural firm Henning Larsen features in Archello’s 25 best architecture firms in... More

WOODlife’s floors and finishes add warmth and texture to Oslo House
17 May 2024 News
WOODlife’s floors and finishes add warmth and texture to Oslo House

Dutch flooring brand WOODlife was included in Archello’s list of 25 best engineered wood floor... More